

 Navigation

 	
 index

 	
 next |

 	dbsake 2.1.0 documentation

Welcome to dbsake

[image: _images/sake-icon.png]
dbsake is a collection of command-line tools to perform various DBA related
tasks for MySQL.

curl -s http://get.dbsake.net > dbsake
chmod u+x dbsake
dbsake sandbox

	酒 dbsake
	Features

	Dependencies

	Reporting Bugs

	Quickstart
	“Upgrading” a my.cnf

	Processing mysqldump output

	Deploying a MySQL sandbox instance

	Dumping the schema from MySQL .frm files

	Usage
	Synopsis

	Description

	Options

	Enabling Bash completion

	Commands
	decode-tablename
	Usage

	Example

	Options

	encode-tablename
	Usage

	Example

	Options

	frmdump
	Usage

	Example

	Options

	sandbox
	Usage

	Example

	Options

	Using the sandbox.sh control script

	sieve
	Usage

	Example

	Options

	upgrade-mycnf
	Usage

	Example

	Options

	fincore
	Usage

	Example

	Options

	uncache
	Usage

	Example

	Options

	unpack
	Usage

	Example

	Options

	History
	2.1.0 (2015-01-28)

	2.0.0 (2014-08-05)

	1.0.9 (2014-07-09)

	1.0.8 (2014-04-02)

	1.0.7 (2014-02-20)

	1.0.6 (2014-02-17)

	1.0.5 (2014-01-31)

	1.0.4 (2014-01-24)

	1.0.3 (2014-01-16)

	1.0.2 (2014-01-07)

	1.0.1 (2014-01-06)

	1.0.0 (2014-01-02)

	Contributing
	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Write Documentation

	Submit Feedback

	Get Started!

	Pull Request Guidelines

	Tips

	Appendix
	Description of the .frm format
	.frm fileinfo section

	Key info section

	Defaults Section

	Extra data section

	FormInfo

	Column Metadata

Indices and tables

	Index

	Search Page

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

酒 dbsake

[image: https://travis-ci.org/abg/dbsake.png]
 [https://travis-ci.org/abg/dbsake][image: https://coveralls.io/repos/abg/dbsake/badge.png]
 [https://coveralls.io/r/abg/dbsake]dbsake - a (s)wiss-(a)rmy-(k)nif(e) for MySQL

	Free software: GPLv2

	Documentation: http://docs.dbsake.net.

Features

	Parsing MySQL .frm files and output DDL [http://dbsake.readthedocs.org/en/latest/commands/frmdump.html]

	Filtering and transforming mysqldump output [http://dbsake.readthedocs.org/en/latest/commands/sieve.html]

	Patching a my.cnf to remove or convert deprecated options [http://dbsake.readthedocs.org/en/latest/commands/upgrade-mycnf.html]

	Deploying a new standalone MySQL “sandbox” instance [http://dbsake.readthedocs.org/en/latest/commands/sandbox.html]

	Decoding/encoding MySQL filenames [http://dbsake.readthedocs.org/en/latest/commands/decode_tablename.html]

	Managing OS caching for a set of files [http://dbsake.readthedocs.org/en/latest/commands/fincore.html]

Dependencies

	Requires python v2.6+

	jinja2 >= 2.2

	click >= 2.0

Reporting Bugs

If you find a bug in dbsake please report the issue on the dbsake issue on
github [https://github.com/abg/dbsake/issues/new]

If you know how to fix the problem feel free to fork dbsake and submit a pull
request. See Contributing [http://dbsake.readthedocs.org/en/latest/contributing.html#report-bugs] for more information.

Quickstart

You can fetch dbsake easily from get.dbsake.net:

$ curl -s get.dbsake.net > dbsake

This is an executable python zip archive with all dependencies included.

You can run as a script by making it executable:

$ chmod u+x dbsake

Run it with no arguments to see all possible commands:

$ dbsake
Usage: dbsake [options] <command>

Options:
 -d, --debug
 -q, --quiet
 -V, --version Show the version and exit.
 -?, --help Show this message and exit.

Commands:
 decode-tablename Decode a MySQL filename.
 encode-tablename Encode a MySQL table identifier.
 fincore Report cached pages for a file.
 frmdump Dump schema from MySQL frm files.
 help Show help for a command.
 sandbox Create a sandboxed MySQL instance.
 sieve Filter and transform mysqldump output.
 uncache Uncache file(s) from the OS page cache.
 upgrade-mycnf Upgrade a MySQL option file.

“Upgrading” a my.cnf

Here’s how you might upgrade a MySQL 5.0 my.cnf to 5.5:

$ dbsake upgrade-mycnf --target=5.5 --config=my.cnf --patch
Rewriting option 'log-slow-queries'. Reason: Logging options changed in MySQL 5.1
Removing option 'skip-external-locking'. Reason: Default behavior in MySQL 4.1+
--- a/my.cnf
+++ b/my.cnf
@@ -26,7 +26,6 @@
 [mysqld]
 port = 3306
 socket = /var/run/mysqld/mysqld.sock
-skip-external-locking
 key_buffer_size = 384M
 max_allowed_packet = 1M
 table_open_cache = 512
@@ -127,7 +126,9 @@
 #innodb_log_buffer_size = 8M
 #innodb_flush_log_at_trx_commit = 1
 #innodb_lock_wait_timeout = 50
-log-slow-queries = /var/lib/mysql/slow.log
+slow-query-log = 1
+slow-query-log-file = /var/lib/mysql/slow.log
+log-slow-slave-statements

 [mysqldump]
 quick

Processing mysqldump output

Here’s how you filter a single table from a mysqldump:

$ mysqldump -A | dbsake sieve --to-stdout -t mysql.db
-- MySQL dump 10.14 Distrib 5.5.38-MariaDB, for Linux (x86_64)
--
-- Host: localhost Database:
-- --
-- Server version 5.5.38-MariaDB-log

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--
-- Table structure for table `db`
--

DROP TABLE IF EXISTS `db`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `db` (
 `Host` char(60) COLLATE utf8_bin NOT NULL DEFAULT '',
 `Db` char(64) COLLATE utf8_bin NOT NULL DEFAULT '',
 `User` char(16) COLLATE utf8_bin NOT NULL DEFAULT '',
 `Select_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Insert_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Update_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Delete_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Create_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Drop_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Grant_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `References_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Index_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Alter_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Create_tmp_table_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Lock_tables_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Create_view_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Show_view_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Create_routine_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Alter_routine_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Execute_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Event_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 `Trigger_priv` enum('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N',
 PRIMARY KEY (`Host`,`Db`,`User`),
 KEY `User` (`User`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='Database privileges';
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `db`
--

LOCK TABLES `db` WRITE;
/*!40000 ALTER TABLE `db` DISABLE KEYS */;
/*!40000 ALTER TABLE `db` ENABLE KEYS */;
UNLOCK TABLES;

/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2014-07-22 21:01:35

Deploying a MySQL sandbox instance

Here is how you create a MySQL 5.7.3-m13 instance:

$ dbsake sandbox -m 5.7.3-m13
Preparing sandbox instance: /home/localuser/sandboxes/sandbox_20140722_210338
 Creating sandbox directories
 * Created directories in 0.00 seconds
 Deploying MySQL distribution
 - Deploying MySQL 5.7.3-m13 from download
 - Using cached download /home/localuser/.dbsake/cache/mysql-5.7.3-m13-linux-glibc2.5-x86_64.tar.gz
 - Verifying gpg signature via: /usr/bin/gpg2 --verify /home/localuser/.dbsake/cache/mysql-5.7.3-m13-linux-glibc2.5-x86_64.tar.gz.asc -
 - Unpacking tar stream. This may take some time
(100.00%)[==] 322.9MiB / 322.9MiB
 - GPG signature validated
 * Deployed MySQL distribution in 13.56 seconds
 Generating my.sandbox.cnf
 - Generated random password for sandbox user root@localhost
 * Generated /home/localuser/sandboxes/sandbox_20140722_210338/my.sandbox.cnf in 0.03 seconds
 Bootstrapping sandbox instance
 - Logging bootstrap output to /home/localuser/sandboxes/sandbox_20140722_210338/bootstrap.log
 * Bootstrapped sandbox in 2.67 seconds
 Creating sandbox.sh initscript
 * Generated initscript in 0.01 seconds
Sandbox created in 16.28 seconds

Here are some useful sandbox commands:
 Start sandbox: /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh start
 Stop sandbox: /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh stop
 Connect to sandbox: /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh mysql <options>
 mysqldump sandbox: /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh mysqldump <options>
Install SysV service: /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh install-service

The sandbox.sh script has some convenient commands for interacting with the sandbox too:

$ /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh start
Starting sandbox: .[OK]

$ /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh mysql -e 'select @@datadir, @@version, @@version_comment\G'
*************************** 1. row ***************************
 @@datadir: /home/localuser/sandboxes/sandbox_20140722_210338/data/
 @@version: 5.7.3-m13-log
@@version_comment: MySQL Community Server (GPL)

The sandbox.sh script can also install itself, if you want to make the sandbox persistent:

$ sudo /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh install-service
+ /bin/cp /home/localuser/sandboxes/sandbox_20140722_210338/sandbox.sh /etc/init.d/mysql-5.7.3
+ /sbin/chkconfig --add mysql-5.7.3 && /sbin/chkconfig mysql-5.7.3 on
Service installed in /etc/init.d/mysql-5.7.3 and added to default runlevels

Dumping the schema from MySQL .frm files

Here’s an example dumping a normal table’s .frm:

$ sudo dbsake frmdump /var/lib/mysql/sakila/actor.frm
--
-- Table structure for table `actor`
-- Created with MySQL Version 5.5.34
--

CREATE TABLE `actor` (
 `actor_id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,
 `first_name` varchar(45) NOT NULL,
 `last_name` varchar(45) NOT NULL,
 `last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`actor_id`),
 KEY `idx_actor_last_name` (`last_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

You can also format VIEW .frm files directly as well:

$ sudo dbsake frmdump /var/lib/mysql/sakila/actor_info.frm
--
-- View: actor_info
-- Timestamp: 2014-01-18 18:22:54
-- Stored MD5: 402b8673b0c61034644b5b286519d3f1
-- Computed MD5: 402b8673b0c61034644b5b286519d3f1
--

CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost` SQL SECURITY INVOKER VIEW `actor_info` AS select `a`.`actor_id` AS `actor_id`,`a`.`first_name` AS `first_name`,`a`.`last_name` AS `last_name`,group_concat(distinct concat(`c`.`name`,': ',(select group_concat(`f`.`title` order by `f`.`title` ASC separator ', ') from ((`sakila`.`film` `f` join `sakila`.`film_category` `fc` on((`f`.`film_id` = `fc`.`film_id`))) join `sakila`.`film_actor` `fa` on((`f`.`film_id` = `fa`.`film_id`))) where ((`fc`.`category_id` = `c`.`category_id`) and (`fa`.`actor_id` = `a`.`actor_id`)))) order by `c`.`name` ASC separator '; ') AS `film_info` from (((`sakila`.`actor` `a` left join `sakila`.`film_actor` `fa` on((`a`.`actor_id` = `fa`.`actor_id`))) left join `sakila`.`film_category` `fc` on((`fa`.`film_id` = `fc`.`film_id`))) left join `sakila`.`category` `c` on((`fc`.`category_id` = `c`.`category_id`))) group by `a`.`actor_id`,`a`.`first_name`,`a`.`last_name`;

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

Usage

Synopsis

dbsake [-d|–debug] [-q|–quiet] [-V|–version] [-?|–help] <command> [<args>]

Description

dbsake is a collection of command-line tools to assist with administering parts
of a MySQL database.

Formatted and hyperlinked versions of the latest dbsake documentation can be
found at http://docs.dbsake.net.

Options

	
-?, --help

	Show the top-level dbsake options

	
-V, --version

	Output the current dbsake version and exit

	
-q, --quiet

	Suppresses all logging output. Commands that output to stdout will still
emit output, but no logging will be performed. You can use the exit
status of dbsake to detect failure in these cases

	
-d, --debug

	Enable debugging output. This enables more verbose logs that are typically
not necessary, but may be helpful for troubleshooting.

Enabling Bash completion

dbsake supports bash completion via the python-click library. To enable this
you can run the following command:

eval $(_DBSAKE_COMPLETE=source dbsake)

This will enable tab completing subcommands and options.

Bash completion only works if the script is run directly and not directly via
the python interpreter. That is the following will use tab completion:

eval $(_DBSAKE_COMPLETE=source ./dbsake)
./dbsake <TAB>

However, the following command will not:

eval $(_DBSAKE_COMPLETE=source dbsake)
python dbsake<TAB>

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

Commands

	decode-tablename
	Usage

	Example

	Options

	encode-tablename
	Usage

	Example

	Options

	frmdump
	Usage

	Example

	Options

	sandbox
	Usage

	Example

	Options

	Using the sandbox.sh control script

	sieve
	Usage

	Example

	Options

	upgrade-mycnf
	Usage

	Example

	Options

	fincore
	Usage

	Example

	Options

	uncache
	Usage

	Example

	Options

	unpack
	Usage

	Example

	Options

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

decode-tablename

Decode a MySQL encoded filename

As of MySQL 5.1, tablenames with special characters are encoded with a custom
“filename” encoding. This command reverses that process to output the original
tablename.

Usage

Usage: dbsake decode-tablename [options] [NAMES]...

 Decode a MySQL tablename as a unicode name.

Options:
 -?, --help Show this message and exit.

Example

$ dbsake decode-tablename foo@002ebar
foo.bar

Options

	
path [path...]

	Specify a filename to convert to plain unicode

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

encode-tablename

Encode a MySQL tablename with the MySQL filename encoding

This is the opposite of filename-to-tablename, where it takes a normal
tablename and converts it using MySQL’s filename encoding.

Usage

Usage: dbsake encode-tablename [options] [NAMES]...

 Encode a MySQL tablename

Options:
 -?, --help Show this message and exit.

Example

$ dbsake encode-tablename foo.bar
foo@002ebar

Options

	
path [path...]

	Specify a tablename to convert to an encoded filename

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

frmdump

Decode a MySQL .frm file and output a CREATE VIEW or CREATE TABLE statement.

This command does not require a MySQL server and interprets a .frm file
according to rules similar to the MySQL server.

For more information on how this command works see Description of the .frm format

Important

This program only decodes data strictly available in the .frm file.
InnoDB foreign-key references are not preserved and AUTO_INCREMENT values
are also not preserved as these are stored outside of the .frm.

Usage

Usage: dbsake.sh frmdump [options] [path[, path...]]

 Dump schema from MySQL frm files.

Options:
 -t, --type-codes
 -R, --replace
 -?, --help Show this message and exit.

Example

$ dbsake frmdump --type-codes /var/lib/mysql/mysql/plugin.frm
--
-- Table structure for table `plugin`
-- Created with MySQL Version 5.5.35
--

CREATE TABLE `plugin` (
 `name` varchar(64) NOT NULL DEFAULT '' /* MYSQL_TYPE_VARCHAR */,
 `dl` varchar(128) NOT NULL DEFAULT '' /* MYSQL_TYPE_VARCHAR */,
 PRIMARY KEY (`name`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COMMENT='MySQL plugins';

$ dbsake frmdump /var/lib/mysql/sakila/actor_info.frm
--
-- View: actor_info
-- Timestamp: 2014-01-04 05:29:55
-- Stored MD5: 402b8673b0c61034644b5b286519d3f1
-- Computed MD5: 402b8673b0c61034644b5b286519d3f1
--

CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost` SQL SECURITY INVOKER VIEW `actor_info` select `a`.`actor_id` AS `actor_id`,`a`.`first_name` AS `first_name`,`a`.`last_name` AS `last_name`,group_concat(distinct concat(`c`.`name`,': ',(select group_concat(`f`.`title` order by `f`.`title` ASC separator ', ') from ((`sakila`.`film` `f` join `sakila`.`film_category` `fc` on((`f`.`film_id` = `fc`.`film_id`))) join `sakila`.`film_actor` `fa` on((`f`.`film_id` = `fa`.`film_id`))) where ((`fc`.`category_id` = `c`.`category_id`) and (`fa`.`actor_id` = `a`.`actor_id`)))) order by `c`.`name` ASC separator '; ') AS `film_info` from (((`sakila`.`actor` `a` left join `sakila`.`film_actor` `fa` on((`a`.`actor_id` = `fa`.`actor_id`))) left join `sakila`.`film_category` `fc` on((`fa`.`film_id` = `fc`.`film_id`))) left join `sakila`.`category` `c` on((`fc`.`category_id` = `c`.`category_id`))) group by `a`.`actor_id`,`a`.`first_name`,`a`.`last_name`;

Options

Changed in version 2.0.0: frm-to-schema was renamed to frmdump

	
-R, --replace

	Output view as CREATE OR REPLACE so that running the DDL against MySQL will
overwrite a view.

	
-t, --type-codes

	Add comment to base tables noting the underlying mysql type code
as MYSQL_TYPE_<name>.

	
path [path...]

	Specify the .frm files to generate a CREATE TABLE command from.

New in version 1.0.2: Support for indexes with a prefix length in binary .frm files; e.g. KEY (blob_value(255))

Changed in version 1.0.2: Views are parsed from .frm files rather than skipped.

Changed in version 1.0.2: Raw MySQL types are no longer added as comments unless the –raw-types
option is specified.

Changed in version 1.0.2: A – Table structure for table `<name>` comment is added before each table

Changed in version 2.0.0: The --raw-types option was renamed to frmdump --type-codes.

New in version 1.0.2: The frmdump --replace option

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

sandbox

New in version 1.0.3.

Setup a secondary MySQL instance painlessly.

This setups a MySQL under ~/sandboxes/ (by default) with a
randomly generated password for the root@localhost user
and networking disabled.

A simple shell script is provided to start, stop and connect
to the MySQL instance.

Changed in version 1.0.5: dbsake verifies the gpg signature of downloaded MySQL tarball distributions

Important

As of dbsake 2.0.0, the sandbox options have changed. -D is now an alias for
–datadir, although it was previously an alias for –data-source. The -s
option is now an alias for –data-source in order to specify a tarball to
seed the sandbox instance with. See sandbox --datadir and
sandbox --data-source for more information.

Usage

Usage: dbsake sandbox [OPTIONS]

 Create a sandboxed MySQL instance.

 This command installs a new MySQL instance under the specified sandbox
 directory, or under ~/sandboxes/sandbox_<datetime> if none is specified.

Options:
 -d, --sandbox-directory <path> path where sandbox will be installed
 -m, --mysql-distribution <dist>
 mysql distribution to install
 -D, --datadir <path> Path to datadir for sandbox
 -s, --data-source <source> path to file to populate sandbox
 -t, --table <glob-pattern> db.table glob pattern to include from
 --data-source
 -T, --exclude-table <glob-pattern>
 db.table glob pattern to exclude from
 --data-source
 -c, --cache-policy <policy> cache policy to apply when downloading mysql
 distribution
 --skip-libcheck skip check for required system libraries
 --skip-gpgcheck skip gpg verification of download mysql
 distributions
 --force overwrite existing sandbox directory
 -u, --mysql-user <user> MySQL user to add to the sandbox instance
 -p, --password prompt for password to create root@localhost
 with
 -x, --innobackupex-options <options>
 additional options to run innobackupex
 --apply-logs
 -?, --help Show this message and exit.

Example

dbsake sandbox --sandbox-directory=/opt/mysql-5.6.19 \
> --mysql-distribution=5.6.19 \
> --data-source=backup.tar.gz
Preparing sandbox instance: /opt/mysql-5.6.19
 Creating sandbox directories
 * Created directories in 0.00 seconds
 Preloading sandbox data from /root/backup.tar.gz
(100.00%)[==] 276.0KiB / 276.0KiB
 - Sandbox data appears to be unprepared xtrabackup data
 - Running: /root/xb/bin/innobackupex --apply-log .
 - (cwd: /opt/mysql-5.6.19/data)
 - innobackupex --apply-log succeeded. datadir is ready.
 * Data extracted in 4.46 seconds
 Deploying MySQL distribution
 - Deploying MySQL 5.6.19 from download
 - Downloading from http://cdn.mysql.com/Downloads/MySQL-5.6/mysql-5.6.19-linux-glibc2.5-x86_64.tar.gz
 - Importing mysql public key to /root/.dbsake/gpg
 - Verifying gpg signature via: /bin/gpg2 --verify /root/.dbsake/cache/mysql-5.6.19-linux-glibc2.5-x86_64.tar.gz.asc -
 - Unpacking tar stream. This may take some time
(100.00%)[==] 291.4MiB / 291.4MiB
 - GPG signature validated
 - Stored MD5 checksum for download: /root/.dbsake/cache/mysql-5.6.19-linux-glibc2.5-x86_64.tar.gz.md5
 * Deployed MySQL distribution in 46.17 seconds
 Generating my.sandbox.cnf
 - Generated random password for sandbox user root@localhost
 ! Existing ib_logfile0 detected. Setting innodb-log-file-size=5M
 ! Found existing shared innodb tablespace: ibdata1:18M:autoextend
 * Generated /opt/mysql-5.6.19/my.sandbox.cnf in 0.03 seconds
 Bootstrapping sandbox instance
 - Logging bootstrap output to /opt/mysql-5.6.19/bootstrap.log
 - User supplied mysql.user table detected.
 - Skipping normal load of system table data
 - Ensuring root@localhost exists
 * Bootstrapped sandbox in 2.04 seconds
 Creating sandbox.sh initscript
 * Generated initscript in 0.01 seconds
Sandbox created in 52.72 seconds

Here are some useful sandbox commands:
 Start sandbox: /opt/mysql-5.6.19/sandbox.sh start
 Stop sandbox: /opt/mysql-5.6.19/sandbox.sh stop
 Connect to sandbox: /opt/mysql-5.6.19/sandbox.sh mysql <options>
 mysqldump sandbox: /opt/mysql-5.6.19/sandbox.sh mysqldump <options>
Install SysV service: /opt/mysql-5.6.19/sandbox.sh install-service

Options

Changed in version 2.0.0: mysql-sandbox renamed to sandbox

	
-d, --sandbox-directory <path>

	Specify the path under which to create the sandbox. This defaults
to ~/sandboxes/sandbox_$(date +%Y%m%d_%H%M%S)

Changed in version 1.0.6: –sandbox-directory supports relative paths

	
-m, --mysql-distribution <name>

	Specify the source for the mysql distribution. This can be one of:

	
	system - use the local mysqld binaries already installed on

	the system

	mysql*.tar.gz - path to a tarball distribution

	
	<mysql-version> - if a mysql version is specified then an

	attempt is made to download a binary tarball
from dev.mysql.com and otherwise is identical
to installing from a local tarball

The default, if no option is specified, will be to use system which
copies the minimum binaries from system director to $sandbox_directory/bin/.

Changed in version 1.0.4: –mysql-source was renamed to –mysql-distribution

Note

–mysql-distribution = <version> will only auto-download tarballs from
mysql.com. To install Percona or MariaDB sandboxes, you will need
to download the tarballs separately and specify the tarball path
via –mysql-distribution /path/to/my/tarball

	
-D, --datadir <path>

	Specify the path to the datadir to be used for the sandbox. If this path
does not exist, it will be created. The datadir will be boostrapped using
the MySQL version specified via the sandbox --mysql-distribution
option. Sanity checks will be done against the path to verify that it
is either empty or seems to be a valid, unused MySQL datadir.

New in version 2.0.0.

	
-s, --data-source <tarball>

	Specify a tarball that will be used for the sandbox datadir. If a tarball
is specified it will be extracted to the ./data/ path under the sandbox
directory, subject to any filtering specified by the –table and
–exclude-table options.

New in version 1.0.4.

Changed in version 2.0.0: The -s short option was added. In 1.0 this was -D, but as of
2.0.0, -D is an alias for –datadir.

Changed in version 2.0.0: –data-source now only takes a tarball option. To use an existing datadir,
use the sandbox --datadir option.

Changed in version 1.0.5: A directory may be specified for the –data-source option to use an
existing datadir for the sandbox.

Note

Support for tarballs in –data-source is presently limited to tarballs
relative to the datadir - such as those generated by percona-xtrabackup or
certain LVM snapshot backup utilities.

Directory data sources have no filtering applied even if –table or
–exclude-table options were provided.

	
-t, --table <glob>

	Specify a glob pattern to filter elements from the –data-source option. If
–data-source is not specified this option has no effect. <glob> should be
of the form database.table with optional glob special characters. This use
the python fnmatch mechanism under the hood so is limited to only the *, ?,
[seq] and [!seq] glob operations.

New in version 1.0.4.

Changed in version 2.0.0: --table="mysql.*" is included by default in the list of table options
regardless of other sandbox --table optons. Tables in the mysql
schema can be excluded by using the sandbox --exclude-table
option.

	
-T, --exclude-table <glob>

	Specify a glob pattern to filter elements from the –data-source option. If
–data-source is not specified this option has no effect.

New in version 1.0.4.

	
-c, --cache-policy <always|never|refresh|local>

	Specify the cache policy if installing a MySQL distribution via a download
(i.e when only a version is specified). This command will cache downloaded
tarballs by default in the directory specified by $DBSAKE_CACHE environment
variable, or ~/.dbsake/cache if this is not specified.

The cache policies have the following semantics:

	always - check cache and update the cache if a download is required

	never - never use the cache - this will always result in a download

	refresh - skip the cache, but update it from a download

	local - check cache, but fail if a local tarball is not present

New in version 1.0.4.

	
--skip-libcheck

	As of dbsake 1.0.5, if a version of MySQL >= 5.5.4 is requested for
download, dbsake checks for libaio on the system. Without libaio
mysqld from any recent version of MySQL will fail to start at all.
This option allows proceeding anyway in case, dbsake is not detecting libaio
correctly. Use of this option will often cause the sandbox process to just
fail later in the process.

New in version 1.0.5.

	
--skip-gpgcheck

	Disables verification of the gpg signature when downloading MySQL tarball
distributions.

New in version 1.0.5.

	
--force

	Forces overwriting the path specified by --sandbox-directory if
it already exists

New in version 1.0.9.

	
-u, --mysql-user <name>

	Specify the user to add to the sandbox instance. By default this is
root@localhost but can be overriden with this option to avoid changing
the password for an existing root@localhost user when using the
sandbox --data-source option.

New in version 2.0.0.

	
-p, --password

	Prompt for the root@localhost password instead of generating a random
password (the default behavior). The password will be read from stdin
if this option is specified and stdin is not a TTY

New in version 1.0.9.

Changed in version 2.0.0: –prompt-password renamed to –password

	
-x, --innobackupex-options <options>

	Add additional options to the “innobackupex –apply-log {extra options} .”
commandline that the sandbox command uses to prepare a datadir created
from an xtrabackup tarball image provided via the --data-source
opton.

New in version 1.0.9.

Using the sandbox.sh control script

Usage: ./sandbox.sh <action> [options]

When creating a sandbox, mysql-sandbox generate a simple bash script to control
the sandbox in ./sandbox.sh under the sandbox directory. This follows the
pattern of a SysV init script and has many standard actions:

	start

start the sandbox (noop if already started)

	Note: sandbox.sh start passes any additional options directly to the

	mysqld_safe script. So you can do things like:
./sandbox.sh start –init-file=reset_root.sql

	stop

stop the sandbox (noop if already stopped)

	restart

stop then start the sandbox

	condrestart

only restart if sandbox is running

	status
check if the sandbox is running

Additionally there are several custom actions to make managing the sandbox
easier:

	metadata

Outputs some basic information about the sandbox environment including
the version, the my.cnf being used, and various mysql command paths
that are used by sandbox.sh

	version

Output a version string for the mysql server process this sandbox was
initialized with.

	mysql [options]

connect to the sandbox using the mysql command line client

You can pass any option you might pass to mysql here. I.e:
./sanbox.sh mysql -e ‘SHOW ENGINE INNODB STATUSG’
For convenience the action ‘use’ is an alias for ‘mysql’

	mysqldump [options]

run mysqldump against the sandbox

Example: ./sandbox.sh mysqldump –all-databases | gzip > backup.sql.gz

	upgrade [options]

run mysql_upgrade against the sandbox

Example: ./sandbox.sh upgrade –upgrade-system-tables

This is useful in conjunction with the –data-source option where you
might load data from a previous MySQL version into a new version for
testing and want to perform an in-place upgrade of that data.

	install-service

attempt to install the sandbox.sh under /etc/init.d and add to default
runlevels. This is effectively just an alias for:

cp sandbox.sh /etc/init.d/${name}
chkconfig --add ${name} && chkconfig ${name} on

Under ubuntu update-rc.d is used instead of chkconfig.

install-service accept one argument as the name of the service to install.
By default this will be called mysql-${version} where $version is the
current mysqld version being used (e.g. 5.6.15)

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

sieve

Filter and transform a mysqldump stream.

This command processes mysqldump output, potentially filtering or
transforming the output based on the provided command line options.

sieve effective works in two modes:

	streaming; mysqldump is read from --input-file and written to
stdout possibly with different output depending on the provided
options.

	directory; mysqldump is read from --input-file and split into
separate files in the requested directory. This allows converting
a large dump in a file-per-table easily. Files output in this
mode are additionally filtered through --compress-command
and are processed through gzip --fast by default so the
output is compressed on disk by default.

Usage

Usage: dbsake sieve [options]

 Filter and transform mysqldump output.

 sieve can extract single tables from a mysqldump file and perform useful
 transformations, such as adding indexes after the table data is loaded for
 InnoDB tables, where such indexes can be created much more efficiently
 than the default incremental rebuild that mysqldump performs.

Options:
 -F, --format <name> Select the output format (directory, stream)
 -C, --directory <path> Specify output directory when
 --format=directory
 -i, --input-file <path> Specify input file to process instead of
 stdin
 -z, --compress-command <name> Specify compression command when
 --format=directory
 -t, --table <glob> Only output tables matching the given glob
 pattern
 -T, --exclude-table <glob> Excludes tables matching the given glob
 pattern
 --defer-indexes Add secondary indexes after loading table
 data
 --defer-foreign-keys Add foreign key constraints after loading
 table data
 --write-binlog / --no-write-binlog
 Include SQL_LOG_BIN = 0 in output to disable
 binlog
 --table-schema / --no-table-schema
 Include/exclude table schema from output.
 --table-data / --no-table-data Include/exclude table data from output
 --routines / --no-routines Include / exclude database routines from
 output
 --events / --no-events Include / exclude database events from
 output
 --triggers / --no-triggers Include/exclude table triggers from output
 --master-data / --no-master-data
 Uncomment/comment CHANGE MASTER in input, if
 present
 -O, --to-stdout Force output on stdout, even to a terminal.
 -?, --help Show this message and exit.

Example

$ mysqldump --routines sakila | dbsake sieve --format=directory --directory=backups/
$ tree backups
backups
└── sakila
 ├── actor.sql.gz
 ├── address.sql.gz
 ├── category.sql.gz
 ├── city.sql.gz
 ├── country.sql.gz
 ├── customer.sql.gz
 ├── film_actor.sql.gz
 ├── film_category.sql.gz
 ├── film.sql.gz
 ├── film_text.sql.gz
 ├── inventory.sql.gz
 ├── language.sql.gz
 ├── payment.sql.gz
 ├── rental.sql.gz
 ├── routines.ddl.gz
 ├── staff.sql.gz
 ├── store.sql.gz
 └── views.ddl.gz

1 directory, 18 files

Options

Changed in version 2.0.0: Renamed split-mysqldump to sieve; Significant rewrite of functionality.

Changed in version 2.0.0: Remove –regex option in favor of -t/–table and -T/–exclude-table option
which accepts globs.

	
-F, --format <name>

	Output file format. Must be one of ‘stream’ or ‘directory’. If set to
‘stream’, output will be written on stdout. Unless –force is also
specified the sieve command with refuse to write to a terminal.

If set to ‘directory’, output will be written to the path specified by
the --directory option, with a file per table.

New in version 2.0.0.

	
-C, --directory <output directory>

	Path where the sieve command should create output files. Ignored if
--format is set to ‘stream’. The sieve command will create this
path if it does not already exist.

Defaults to ‘.’ - the current working directory.

	
-i, --input-file <path>

	Input file to read mysqldump input from. Default to “-” and reads from
stdin. This must be an uncompressed data source, so to process an already
compressed .sql.gz file you might run it through
“zcat backup.sql.gz | dbsake sieve [options...]”

New in version 2.0.0.

	
-z, --compress-command <command>

	Filter output files through this command. If --format is not set to
‘directory’, then this option is ignored. The sieve command will detect
most common compression command and create an appropriate extension on the
output files. For example, –compress-command=gzip will create .sql.gz
files under the path specified by --directory.

Defaults to “gzip -1”.

Changed in version 2.0.0: -f/–filter-command was renamed to -z/–compress-command

	
-t, --table <glob pattern>

	f --table is specified, then only tables matching the provided glob
pattern will be included in the output of the sieve command. Each table
is qualified by the database name in “database.table” format and then
compared against the glob pattern. For example, to include all tables
in the “mysql” database you would specify –table=”mysql.*”.

This option may be specified multiple times and sieve will include any
table that matches at least one of these options so long as the table
does not also match an --exclude-table option.

If no –table options are provided, all tables are included in the output
that do not otherwise match an --exclude-table pattern.

New in version 2.0.0.

	
-T, --exclude-table <glob pattern>

	If --exclude-table is specified, then only tables not matching
the provided glob pattern will be included in the output of the sieve
command. Each table is qualified by the database name in “database.table”
format and then compared against the glob pattern. For example, to exclude
the mysql.user table from output you would specify the option:
“–exclude-table=mysql.user”.

This option may be specified multiple times and sieve will include any
table that matches at least one of these options so long as the table
does not also match an --exclude-table option.

If no --exclude-table options are provided, all tables are included in
the output that match at least one --table pattern, or all output is
included if neither --exclude-table or --table options are provided.

New in version 2.0.0.

	
--defer-indexes

	This option rewrites the output of CREATE TABLE statements and arranges for
secondary indexes to be created after the table data is loaded. This causes
an additional ALTER TABLE statement to be output after the table data section
of each table, when there is at least one secondary index to be added.

If there are foreign key constraints on the table, associated indexes will
not be deferred unless the --defer-foreign-keys option is also specified.

This option only applies to InnoDB tables and is only efficient on MySQL 5.1+
(if the innodb plugin is enabled) or on MySQL 5.5+ (default InnoDB engine),
where the fast alter path may be used.

	
--defer-foreign-keys

	This option rewrites the output of CREATE TABLE statements and adds foreign
key constraints after the table data is loaded. This is primarily useful
to allow deferring secondary indexes with associated foreign keys.

This option only makes sense if reloading a dump into MySQL 5.6+, othrewise
adding indexes will require a full table rebuild and will end up being
much slower than just reloading the mysqldump unaltered.

	
--write-binlog / --no-write-binlog

	If --no-write-binlog is set, sieve will output a SET SQL_LOG_BIN=0 SQL
command to the beginning of the dump to avoid writing to the binary log
when reloading the resulting output. Use the option with care, as the
resulting dump will not replicate to a slave if this option is set.

New in version 2.0.0.

	
--table-schema / --no-table-schema

	If --no-table-schema is used, sieve will not output any CREATE TABLE
statements and will not output any CREATE VIEW statements. Only table
data, routines and events will be output (as dictated by other options).

New in version 2.0.0.

	
--table-data / --no-table-data

	If --skip-table-data is set, sieve will not output any table data
sections and only output DDL. Reloading such a dump will result in
empty tables.

New in version 2.0.0.

	
--master-data / --no-master-data

	If the --master-data option is set, any commented out CHANGE MASTER
statements will be uncommented in the output. This is useful of setting
up a replication slave from a backup created using –master-data=2.

If the --no-master-data option is set, any CHANGE MASTER statements
will be commented out in the output, ensuring no CHANGE MASTER is run.
This is useful for dumps created with –master-data[=1].

New in version 2.0.0.

	
--routines / --no-routines

	Include or exclude routines from the output, if routines were found in
the input file. By default routines are not excluded and will ony be
excluded if the –no-routines option is specified. The –routines option
used to cancel a previous –no-routines option.

New in version 2.0.0.

	
--events / --no-events

	Include or exclude events from the output, if events were found in
the input file. By default events are not excluded and will ony be
excluded if the –no-events option is specified. The –events option
can be used to cancel a previous –no-events option.

New in version 2.0.0.

	
--triggers / --no-triggers

	Include or exclude table triggers from the output, if triggers were
found in the input file. By default triggers are included for any
output tables (subject to table filtering). –no-triggers will
disable output for all triggers and –triggers can be used to
cancel the effects of an earlier –no-triggers option.

New in version 2.0.0.

	
-O, --to-stdout

	The --to-stdout option will force output to be written to stdout even if
stdout appears to be an active terminal. This can be useful in cases when
filtering the mysqldump output or when not outputing large amounts of data
and want to read it directly on the terminal. By default, the sieve command
will abort if it detects that it would output to a terminal and –to-stdout
is not used.

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

upgrade-mycnf

Copy a my.cnf file and patch any deprecated options.

This command is used to rewrite a my.cnf file and either strip out or rewrite
options that are not compatible with a newer version of MySQL.

The original my.cnf is left untouched. A new my.cnf is output on stdout and
reasons for rewriting or excluding options are output on stderr.

If -p, –patch is specified a unified diff is output on stdout rather than
a full my.cnf. –patch is required if a my.cnf includes any !include*
directives.

Usage

Usage: dbsake upgrade-mycnf [OPTIONS]

 Upgrade a MySQL option file

Options:
 -c, --config PATH my.cnf file to parse
 -t, --target [5.1|5.5|5.6|5.7] MySQL version to target
 -p, --patch Output unified diff rather than full config
 -?, --help Show this message and exit.

Example

$ dbsake upgrade-mycnf -t 5.6 --patch -c /etc/my.cnf
2014-01-04 05:36:34,757 Removing option 'skip-external-locking'. Reason: Default behavior in MySQL 4.1+
--- a/etc/my.cnf
+++ b/etc/my.cnf
@@ -17,7 +17,6 @@
 datadir = /var/lib/mysql
 #tmpdir = /var/lib/mysqltmp
 socket = /var/lib/mysql/mysql.sock
-skip-external-locking = 1
 open-files-limit = 20000
 #sql-mode = TRADITIONAL
 #event-scheduler = 1

Options

	
-c <config>, --config <config>

	Specify which my.cnf file to process
Defaults to /etc/my.cnf

	
-t <version>, --target <version>

	Specify which version of MySQL to target.
This controls which options are rewritten based on the deprecated options in
the target MySQL version.
Defaults to 5.5

	
-p, --patch

	Specify the output should be a unified diff rather than a full my.cnf.
Defaults to outputting a full my.cnf if this option is not specified.

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

fincore

Discover which parts of a file are cached by the OS.

This command uses the mincore() system call on linux to grab a mapping of cached
pages. Currently this done with a single mincore() call and requires 1-byte for
each 4KiB page. For very large files, this may require several MiBs or more of
memory. For a 1TB file this is 256MiB, for instance.

Usage

Usage: dbsake fincore [OPTIONS] [PATHS]...

 Report cached pages for a file.

Options:
 -v, --verbose
 -?, --help Show this message and exit.

Example

dbsake fincore /var/lib/mysql/ibdata1
/var/lib/mysql/ibdata1: total_pages=6656 cached=0 percent=0.00
cat /var/lib/mysql/ibdata1 > /dev/null
dbsake fincore /var/lib/mysql/ibdata1
/var/lib/mysql/ibdata1: total_pages=6656 cached=6656 percent=100.00

Options

	
--verbose

	Print each cached page number that is cached.

	
path [path...]

	Path(s) to check for cached pages

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

uncache

Remove a file’s contents from the OS cache.

This command is useful when using O_DIRECT. A file cached by the OS often
causes O_DIRECT to use a slower path - and often buffered + direct I/O is
an unsafe operation anyway.

With MySQL, for instance, a file may be accidentally cached by filesystem
backups that just archive all files under the MySQL datadir. MySQL itself
may be using innodb-flush-method=O_DIRECT, and once these pages are cached
there can be a performance degradation. uncache drops these cached pages
from the OS so O_DIRECT can work better.

Usage

Usage: dbsake uncache [OPTIONS] [PATHS]...

 Drop OS cached pages for a file.

Options:
 -?, --help Show this message and exit.

Example

dbsake fincore /var/lib/mysql/ibdata1
/var/lib/mysql/ibdata1: total_pages=6656 cached=6656 percent=100.00
dbsake uncache /var/lib/mysql/ibdata1
Uncached /var/lib/mysql/ibdata1
dbsake fincore /var/lib/mysql/ibdata1
/var/lib/mysql/ibdata1: total_pages=6656 cached=0 percent=0.00

Options

	
path [path...]

	Path(s) to remove from cache.

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

 	Commands

unpack

New in version 2.1.0.

Unpack a datadir archive for MySQL.

This expects a .tar or .xb based file archive of a MySQL datadir, whose paths
are relative to the MySQL datadir. Such archives might be generated by
Percona XtraBackup or other LVM based backup utilities.

Usage

Usage: dbsake unpack [options] <path>

 Unpack a MySQL backup archive.

 This command will unpack tar or Percona XtraBackup xbstream archives with
 support for filtering and extracting only a subset of tables.

Options:
 -l, --list-contents List the contents of the archive, but don't
 extract.
 --progress / --no-progress Enable/disable progress bar when unpacking.
 -C, --directory <path> Directory to output to (default: $PWD)
 -t, --table <db.table> Only extract table datafiles matching
 specified database.table glob patterns.
 -T, --exclude-table <db.table> Exclude table data files matching specified
 databsae.table glob patterns.
 -?, --help Show this message and exit.

Example

$ dbsake unpack -C /data/mysql/ < backup.xb.gz
...

Options

	
-l, --list-contents

	List the contents of the archive but do not extract any file contents.
Each file path will be output to stdout. Table inclusion/exclusion
options are honored and any excluded table will not output.

	
--progress / --no-progress

	Enable or disable (respectively) progress bar output. This outputs
a bar on stderr indicating how much data has been read thus far,
and, if known, an estimated ETA until completion.

If stderr appears to be a TTY (i.e. isatty(3) is true for stderr),
progress wil be enabled by default.

	
-C, --directory <path>

	Output all archived files relative to <path>.

<path> defaults to the current working directory.

	
-t, --table <glob>

	Restricted extracted table data files to those who
match a database.tablename glob. This matching is
done against the decoded tablename so paths like
foo@002dbar/foo@002dbaz would be filtered with
a pattern like ‘foo-bar.foo-baz’.

This option may be specified multiple times. A table
is included if it matches at least one include pattern
and does not match any exclude patterns.

Note: mysql.* is always enabled regardless of this
option. To exclude the mysql schema, a specified
–exclude-table option should be used.

	
-T, --table <glob>

	Restricted extracted table data files to those who
do NOT match a database.tablename glob. This matching
is done against the decoded tablename after processing
the MySQL filename encoding and after removing any
relative extensions or partitioning information from
the filename.

This option may be specified multiple times. A table
is extracted if it matches at least one include option
(if any are specified) and does not match any exclude
options.

	
[path]

	Path to the archive to process. This defaults to stdin
but the unpack command will refuse to process input
from a tty. You must redirect stdin with a valid
archive file or specify a path to a valid archive.

Unpack supports both xbstream format files (as generated
by Percona XtraBackup) and tar format files. All paths
are assumed to be relative to the datadir (similar to
archives generated by Percona XtraBackup or various Holland
Backup Manager plugins). dbsake will transparently
decompress input archives - currently gzip, bzip2,
lzop and xz extension are supported, provided the
decompression utilities are available on $PATH.

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

History

2.1.0 (2015-01-28)

	New features

	
	unpack command added to help extracting files from .tar or .xb archives
See http://docs.dbsake.net/en/latest/commands/unpack.html for for details.

	“make dbsake.sh” would fail under python2.6 due to some assumptions
around python’s zipfile module.

	“make test-all” will now test against python2.6, python3.4 environments,
if available.

Bugs fixed:

	fincore: handle io errors more gracefully (issue #72)

	
	frmdump: decoding/encoding _filename encoding MySQL names is now

	compatible with python3. This would previously fail under
python3 in some circumstances.

	
	sandbox: sandbox.sh no longer uses the sed -r flag when processing my.cnf

	options to make the script more compatible on non-GNU platforms.
(issue #70)

	
	sandbox: gpg stderr output was previously logged incorrectly

	(issue #74)

	
	sandbox: mysqld –init-file is now used to generate the database user

	rather than parsing the user.frm or injecting SQL into the
bootstrap process. This resolves an issue with recent MySQL
5.7 releases and should generally be more robust.

	
	sandbox: “sandbox.sh mysql” now sets MYSQL_HISTFILE to .mysql_history

	relative to the sandbox base directory, rather than appending
to ~/.mysql_history. This avoids problems mixing libedit w/
libreadline (issue #76)

	
	sandbox: stale pidfiles are now detected and handled gracefully.

	Previously a stale pidfile would require manual intervention
to remove the mysql.pid or ./sandbox.sh start would fail
to automatically restart a crashed instance. (issue #75)

	
	sandbox: The –datasource option now correctly display progress

	when unpacking a compressed datasource. (issue #73)

	
	sandbox: The –datasource option now handles xbstream archives in

	addition to .tar archives and supports more compression
options for both (.gz, .bz2, .xz and .lzo)

	
	sandbox: –progress / –no-progress options have been added to

	control the display of progressbars

	
	sandbox: logging more consistently uses whitespace when subtasks

	are completed during sandbox creation.

	
	sandbox: The generated my.sandbox.cnf now generates a somewhat

	cleanear default config. wait-timeout / interactive-timeout
now use the MySQL defaults rather than being 600 / 3600
(respectively). The buggy relay-log-space-limit is avoided
and innodb-buffer-pool-{dump,restore} options are set by
default on MySQL 5.6+.

	
	sandbox: Extracting –datasource archives are now handled via the

	internal unpack command for consistency.

	
	sieve: Decompressing compressed input would fail on platforms where

	flushing read-only files results in an EBADF file. (Issue #71)

	
	sieve: documentation incorrectly referenced “–no-write-binlog” as

	“–disable-binlog” (issue #81)

	
	sieve: mariadb gtid information in mysqldump output is now handled

	properly (issue #78)

	
	upgrade-mycnf: The example in the documentation was incorrectly missing

	the -c / –config option. (issue #82)

2.0.0 (2014-08-05)

The 2.0.0 release is a major update to dbsake significantly updating
various internals and introducing some backwards incompatible changes.

As of 2.0.0, dbsake uses semantic versioning [http://semver.org/] and new
features will only be introduced in point releases (2.1, 2.2, 2.3, etc.) Only
strict bug fixes will be introduced in patch releases (2.0.1, 2.0.2, etc.)
going forward. Incompatible changes will only be introduced in major version
bumps (3.0, 4.0, etc.).

Compatibility changes:

	frm-to-schema command has been renamed to frmdump

	frmdump -r/–raw-types option was renamed to -t/–type-codes

	mysql-sandbox command has been renamed to sandbox

	filename-to-tablename command has been renamed to decode-tablename

	tablename-to-filename command has been renamed to encode-tablename

	importfrm command has been removed

	read-ibbinlog command has been removed

	split-mysqldump has been completely redesigned and renamed to “sieve”,
with many more capabilities than the old split-mysqldump command. Read the
sieve documentation [http://docs.dbsake.net/en/latest/commands/sieve.html]
for more information.

	dbsake 2.0+ uses click [http://click.pocoo.org/] for option parsing
instead of baker.py [https://pypi.python.org/pypi/Baker/1.3] used
in 1.0. This provides a more standard option parsing experience, but
this means dbake no longer accepts position arguments interchangably
with options.

	The sandbox command now uses jinja2 to generate templates rather than
tempita.

	sandbox -D is now a short option for –datadir. Use -s as a short
option for –data-source.

	sandbox –prompt-password was shortened to simply –password

	dbsake no longer uses the sarge library internally

	dbsake no longer uses the tempita library internally

New features:

	dbsake now supports bash completion via click. See
Enable bash completion [http://docs.dbsake.net/en/latest/cli.html#enabling-bash-completion]
for details.

	sandbox now uses system compression commands to decompress tarballs
from the –data-source option rather than strictly relying on the
python standard library. This should speed up creating a sandbox
from existing data in some cases and supports more compression
formats (.gz,.bz2, .lzo, .xz) (Issue #64)

	sandbox now includes the mysql.* schema by default when performing
partial restores from existing data (e.g. -D backup.tar.gz -t mydb.*).
Restoring mysql tables to the sandbox can be suppressed with the
-T / –exclude-table ‘mysql.*’ option. (Issue #67)

	sandbox now generates a simplified sandbox.sh shell script file.
The sandbox.sh script now read mysql server options from the my.sandbox.cnf
config file rather than hardcoding various options in sandbox.sh. This
would previously make it tedious to change the path for log-error or
other options.

	sandbox no longer generates a sandbox.sh which sources /etc/sysconfig.

	sandbox now supports a -u/–mysql-user option for specifying the
database user created during sandbox setup.

	sandbox now supports a -D / –datadir option for specifying the MySQL
datadir that should be used for a sandbox. This supersedes support for
–data-source=<directory>, which now only supports tarball targets.

	frmdump now handles MariaDB microsecond precision date/time types.

	fincore and uncache no longer fail when no paths are passed. This usage
is now considered a no-op.

Bugs fixed:

	sandbox failed to create ./tmp/ when overwriting an existing sandbox
directory with –force, if ./data/ already existed but ./tmp did not.
(Issue #65)

	sandbox now handles 5.0 / 5.1 binary tarball installs more robustly.
Previously, mysqld_safe would fail to find my_print_defaults in the
sandbox directory and could fail if sandbox.sh was run when
the current working directory != sandbox directory. (Issue #66)

	frmdump incorrectly defaulted to SQL SECURITY INVOKER when decoding view
.frm files. This behavior has been changed to use MySQL’s default of
SQL SECURITY DEFINER.

	frmdump did not match MySQL output when decoding views

	frmdump did not correctly decode default values for 3-byte MEDIUM int
fields due to several logic errors.

	frmdump did not include the unsigned attribute for float / double fields
which were defined with a (precision, scale) scale attribute.

	frmdump did not format MariaDB TIME fields with microsecond precision
correctly.

	frmdump did not format MariaDB TIMESTAMP fields with microsecond precision
correctly.

	frmdump did not format MariaDB DATETIME(N) with microsecond precision
correctly.

	frmdump did not handle timestamp values that defaulted to ‘0’ correctly,
and instead used ‘1970-01-01 00:00:00’ as the default, rather than the
MySQL convention of using ‘0000-00-00 00:00:00’

	frmdump did not always format microseconds for MySQL 5.6 DATETIME(N)
fields correctly.

1.0.9 (2014-07-09)

New features:

	mysql-sandbox now provides a –force option to disable various
sanity checks allowing installing into an existing directory
(issue #47)

	mysql-sandbox now provides a –prompt-password option for setting the
root@localhost password for a new sandbox. This is a boolean option
that will either prompt for a password (if stdin is attached to a TTY)
or read the password directly from stdin. (issue #53)

	mysql-sandbox now generates my.sandbox.cnf with relay-log and bin-log
options relative to the datadir. These options are still commented out
by default, but now do not reference the non-standard /var/lib/mysqllogs
path. (issue #51)

	mysql-sandbox now includes a commented out “#port = <version>” option
in the generated my.sandbox.cnf options file. (issue #55)

	mysql-sandbo now provides a –innobackupex-options/-x option to allow
passing arbitrary options to innobackupex –apply-log when bootstrapping
a sandbox from an xtrabackup tarball backup image (issue #56)

Bugs fixed:

	mysql-sandbox now includes a comment indiciating the version of dbsake
in both the generated sandbox.sh and my.sandbox.cnf files (issue #42)

	mysql-sandbox now reports errors better when a binary tarball cannot
be found on the MySQL CDN (issue #44)

	mysql-sandbox now provides more details when encountering a bad
mysql tarball distribution (issue #46)

	mysql-sandbox no longer raises an unchecked exception when –data-source
specifies a datadir without an ib_logfile (issue #49)

	mysql-sandbox now bootstraps sandboxes with default-storage-engine=MyISAM
in order to handle TokuDB binary tarball distributions better (issue #50)

	mysql-sandbox now sets the no-auto-rehash option for the mysql client
in my.sandboc.cnf’s [mysql] section.

	mysql-sandbox now only sets the mysql.user plugin field to
‘mysql_native_password’ for MySQL 5.7. This otherwise causes issues
for MariaDB when bootstrapping MariaDB from MySQL 5.6+ data. (issue #54)

	frm-to-schema no longer fails when using the –raw-types option. This
was broken in v1.0.8 as part of a fix for issue #38. (issue #45)

1.0.8 (2014-04-02)

Bug fixes:

	mysql-sandbox now fails more gracefully if bootstrap files are invalid or
not found in a MySQL distribution (issue #37)

	mysql-sandbox now correctly uses /usr/share/percona-server rather than
trying to use a missing or incorrect /usr/share/mysql for system installs
of Percona Server (issue #41)

	mysql-sandbox is now less chatty and many less critical details are only
logged with dbsake –debug to reduce spam

	frm-to-schema now correctly decodes default values for old MySQL varchar
columns generated by servers prior to MySQL 5.0. (issue #36)

	frm-to-schema now decodes unicode metadata identifiers correctly rather than
failing on a parsing error (issue #38)

	frm-to-schema now formats TEXT types (tinytext, mediumtext, text, longtext)
with the associated column level charset or collation (issue #40)

	split-mysqldump nows correctly handles dump files generated with mysqldump
–flush-privileges (issue #33)

	split-mysqldump now handles a commented CHANGE MASTER line generated by
mysqldump –master-data=2 (issue #33)

1.0.7 (2014-02-20)

Bug fixes:

	dbsake frm-to-schema now reads signed MEDIUMINT default values; Previously a
bug caused an uncaught exception to be thrown (issue #19)

	dbsake frm-to-schema now interprets negative signed MEDIUMINT default values
correctly; Previously this would result in incorrect values (issue #23)

	dbsake frm-to-schema introduced a bug in v1.0.6 that caused an exception
when formatting BIGINT default values (issue #20)

	dbsake frm-to-schema should now handle nullable columns more robustly; This
addresses the improper fix made in v1.0.6 for issue #9. Previously this
command was not honoring all the table handler options resulting in
spuriously misinterpretting a column’s default value as NULL. (issue #21)

	dbsake frm-to-schema has improved the formatting for float/double column’s
default values; Previously this used default python precision in output
which was often inaccurate for ‘float’ and generally did not match the
output from mysql SHOW CREATE TABLE (issue #22)

	dbsake frm-to-schema now display table comments similar to SHOW CREATE TABLE
Previously this was displayed with a space separator as “COMMENT ‘<value>’”
but now is display as “COMMENT=’<value>’” (issue #24)

	dbsake frm-to-schema now displays decimal default values correctly in cases
where the encoded decimal bytes were not a multiple of 4 (issue #26)

	dbsake frm-to-schema now trims insignificant zeros from the interger part
of a decimal value; Previously this would display decimal(19, 0) default ‘0’
as default ‘000’ due to implementation details of the decoding algorithm
(issue #27)

	dbsake mysql-sandbox now checks for the existence of mysql installation .sql
scripts; Previously this woudl result in an uncaught exception if
/usr/share/mysql existed but the files necessary for bootstrapping did
not (issue #25)

	dbsake mysql-sandbox now creates the performance_schema database and
tables under MariaDB 5.5+ (issue #28)

1.0.6 (2014-02-17)

New features:

	dbsake mysql-sandbox’s generated ./sandbox.sh start/stop actions now show
progress more visibly by echoing a ‘.’ once a second until the start/stop
action finishes (issue #18)

Bugs fixed:

	dbsake now parses boolean options correctly; previously these would
sometimes consume the next argument in the commandline (issue #8)

	dbsake split-mysqldump now supports deferring indexes specified with an
algorithm; previously these weren’t matched correctly and thus would
never be deferred.

	dbsake split-mysqldump now aborts if an invalid mysqldump header is
detected. previously it was queing lines looking for the end of the
header and used excessive memory and ultimately failing (issue #17)

	dbsake frm-to-schema now handles null values for blob types (issue #9)

	dbsake frm-to-schema now quotes integer default values; Previously
a default of 0 was unquoted and would be handled identically to a
missing default value (issue #11)

	dbsake frm-to-schema now handles MySQL 5.0 .frm files; Previously
frm-to-schema would attempt to read a non-existent partitioning clause and
fail. (issue #14)

	dbsake mysql-sandbox now auto-detects innodb-data-file-path based on
existing ibdata* files from –data-source, or uses MySQL default
if this is an empty sandbox instance (issue #12)

	dbsake mysql-sandbox now handles invalid mysqld binaries more gracefully;
This may occur if attempting to run i686 on an x86_64 platform for
instance. Previously this would fail on an ENOENT error and an uncaught
exception would be thrown. (issue #13)

	dbsake mysql-sandbox –sandbox-directory now handles relatives paths;
Previously these were passed as-is to mysql which would reevaluate the
path relative to the sandbox directory and typically fail to start
(issue #15)

1.0.5 (2014-01-31)

New features:

	dbsake mysql-sandbox’s generated ./sandbox.sh script now supports an
‘upgrade’ action to run mysql_upgrade against the sandbox instance.
(issue #1)

	dbsake mysql-sandbox –mysql-distribution=system (the default) now only
copies the mysqld binary and assumes all other utilities are in the path;
mysqld is copied to avoid security issues under apparmor in debuntu
environments

	dbsake mysql-sandbox has reduced the required disk footprint of mysql
distribution tarballs by excluding ./bin/*_embedded and ./bin/mysql-debug
binaries in addition to excluding ./mysql-test, ./include and ./sql-bench
that was done previously.

	dbsake mysql-sandbox –data-source now supports directory paths, which
point to an existing MySQL datadir; This option simply symlinks the
specified directory to the sandbox ./data path. Sandbox creation will
fail if any of the standard InnoDB data/log files are locked indicating
they are already used by another active instance.

	dbsake mysql-sandbox will now set the root@localhost plugin to
‘mysql_native_password’ when setting a password. This avoids an issue
with MySQL 5.7 which refuses authentication if plugin is not set, which
may be the case if a sandbox is loaded with data from an earlier version.

	dbsake mysql-sandbox now checks for libaio as part of the setup process
and will abort if this is not available for MySQL 5.5+; This check can be
disabled with the –skip-libcheck option, but if mysqld requires this
library the sandbox creation will still fail in this case.

	dbsake mysql-sandbox now performs gpg verification against downloaded
mysql distribution tarballs using mysql.com’s public key; This behavior
can be disabled by using the new –skip-gpgcheck option

	dbsake mysql-sandbox’s generated ./sandbox.sh script now supports a
‘metadata’ action for dumping information about the sandbox environment

	dbsake mysql-sandbox’s generated ./sandbox.sh script now supports a
‘version’ action to echo the mysql version the sandbox was installed with

Bugs fixed:

	dbsake mysql-sandbox no longer suppresses stderr when running mysqld
–version; This is done to discover the exact version of the deployed
mysql distribution to allow my.cnf generation to make adjustments based
on the features available.

	dbsake mysql-sandbox’s generated ./sandbox.sh script now accepts extra
commandline options for the ‘restart’ action which behaves identically
to the ‘start’ action - these are passed down to the mysqld_safe script

1.0.4 (2014-01-24)

New features:

	dbsake now handles SIGINT gracefully

	dbsake now logs a cleaner format

	dbsake –log-level option removed; –debug / –quiet options were added as
simpler knobs to tweak logging output

	dbsake now longer depends on argparse and it has been removed from the
source tree

	dbsake mysql-sandbox has renamed the –mysql-source option to
–mysql-distribution; the short option (-m) is unchanged

	dbsake mysql-sandbox –data-source|-D <path> option added with support for
LVM and xtrabackup tarballs

	dbsake mysql-sandbox –table|-t / –exclude-table|-T <pattern> option added
to filter files read from –data-source tarballs

	dbsake mysql-sandbox –cache-policy option added to support caching
downloaded MySQL distribution tarballs

	dbsake mysql-sandbox now supports a progress bar when downloading mysql
tarball distributions and when extracting –data-source tarballs; The
progress bar is only displayed when stderr is attached to a tty

	dbsake mysql-sandbox now emits timing information for each major step in
the sandbox creation process

	dbsake mysql-sandbox’s generated ./sandbox.sh script now supports ‘use’ and
‘mysql’ actions for connecting to the sandbox instance; These are aliases
for the ‘shell’ command included in v1.0.3

	dbsake mysql-sandbox’s generated ./sandbox.sh script now supports a
‘mysqldump’ action for trivially running mysqldump against the sandbox
instance

	dbsake mysql-sandbox’s generated ./sandbox.sh script now supports
arguments for the ‘start’ action - these are passed directly to the
mysqld_safe process to enable additional mysql options on startup

	dbsake mysql-sandbox’s generated ./sandbox.sh script now supports an
‘install-service’ action that will deploy the ./sandbox.sh as a standard
SysV initscript

Bugs fixed:

	dbsake mysql-sandbox no longer prunes users in the sandbox to avoid removing
existing users from user-provided –data-source tarballs

1.0.3 (2014-01-16)

New features:

	third-party sarge [1] package added to dbsake tree

	third-party tempita [2] package added to dbsake tree

	dbsake now “lazy loads” imports for most commands to improve initial startup
times

	dbsake mysql-sandbox command added; see documentation for more details

	[1]	https://pypi.python.org/pypi/sarge/0.1.3

	[2]	https://pypi.python.org/pypi/Tempita/0.5.3dev

Bugs fixed:

	dbsake frm-to-schema now supports very old VARCHAR fields
(MYSQL_TYPE_VAR_STRING)

	dbsake.spec now supports building under EPEL 5 environments

1.0.2 (2014-01-07)

New features:

	dbsake frm-to-schema now parses views from plaintext .frm files

	dbsake frm-to-schema –replace option added; This outputs view definitions
as CREATE OR REPLACE view to ease importing into MySQL

	dbsake frm-to-schema –raw-types option added; This adds comments to the
column output indicating the low-level raw mysql type
(e.g. MYSQL_TYPE_TINYBLOB) - previously these were always displayed

	dbsake frm-to-schema now outputs a mysqldump-like comment block before each
table or view’s DDL

Bugs fixed:

	dbsake frm-to-schema now formats prefix indexes correctly

	dbsake frm-to-schema no longer outputs MYSQL_TYPE_* comments in CREATE
TABLE output by default; use the new –raw-types to see this information.

1.0.1 (2014-01-06)

New features:
rename CHANGES.rst -> HISTORY.rst

	dbsake –version/-V option added

	documentation has been added to the project

Bugs fixed:

	dbsake –log-level now recognizes log level names correctly

	dbsake fincore now handles zero-byte files gracefully

	dbsake fincore now releases mmap resources gracefully

	dbsake {fincore,uncache} now skip paths that are not a regular file

	dbsake.spec RPM spec now properly depends on python-setuptools

1.0.0 (2014-01-02)

	First release of dbsake

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/abg/dbsake/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
is open to whoever wants to implement it.

Write Documentation

dbsake could always use more documentation, whether as part of the
official dbsake docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/abg/dbsake/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dbsake for local development.

	Fork the dbsake repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/dbsake.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv dbsake
$ cd dbsake/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 dbsake tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, 3.4, and for PyPy. Check
https://travis-ci.org/abg/dbsake/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests/test_dbsake.py

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dbsake 2.1.0 documentation

Appendix

	Description of the .frm format
	.frm fileinfo section

	Key info section

	Defaults Section

	Extra data section

	FormInfo

	Column Metadata

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	dbsake 2.1.0 documentation

 	Appendix

Description of the .frm format

dbsake parses some undocumented / poorly documented formats for MySQL
which were decoded by inspecting the MySQL source code. Here is a
detailed document that attempts to describe the details of such
formats for other who may hack on these parts of dbsake.

.frm fileinfo section

The fileinfo section consists of 64 bytes that encode information about
the rest of the .frm file and various table level options.

The table here describes the information each byte encodes. Offsets are
from the beginning of the file. All values are little-endian integer of the
size noted in the Length column.

	Offset
	Length (bytes)
	Description

	Hex
	Dec

	0000
	0
	2 bytes
	“Magic” identifier
Always the byte sequence fe 01

	0001
	1

	0002
	2
	1 byte
	.frm version [1]

	0003
	3
	1 byte
	“legacy_db_type” [2]

	0004
	4
	2-bytes
	“names_length” - always 3 and not used
in recent MySQL. MySQL 3.23 set this to 1

	0005
	5

	0006
	6
	2-bytes
	IO_SIZE; Always 4096 (0010)

	0007
	7

	0008
	8
	2-bytes
	number of “forms” in the .frm
Should always be 1, even back to 3.23

	0009
	9

	000a
	10
	4-bytes
	Not really used except in .frm creation
Purpose unclear, i guess for aligning
sections in the ancient unireg format

	000b
	11

	000c
	12

	000d
	13

	000e
	14
	2-bytes
	“tmp_key_length”; if equal to 0xffff then
the key length is a 4-byte integer at offset
0x002f

	000f
	15

	0010
	16
	2-bytes
	“rec_length” - this is the size of the byte
string where default values are stored
See Default Values

	0011
	17

	0012
	18
	4-bytes
	Table MAX_ROWS=N opton

	0013
	19

	0014
	20

	0015
	21

	0016
	22
	4-bytes
	Table MIN_ROWS=N option

	0017
	23

	0018
	24

	0019
	25

	001a
	26
	1-byte
	Unused - always zero in 3.23 through 5.6

	001b
	27
	1-byte
	Always 2 - “// Use long pack-fields”

	001c
	28
	2-bytes
	key_info_length - size in bytes of the
keyinfo section

	001d
	29

	001e
	30
	2-bytes
	create_info->table_options
See HA_OPTION_* values in include/my_base.h

	001f
	31

	0020
	32
	1-byte
	Unused; comment “// No filename anymore”

	0021
	33
	1-byte
	5 in 5.0+ comment “// Mark for 5.0 frm file”

	0022
	34
	4-bytes
	Table AVG_ROW_LENGTH option

	0023
	35

	0024
	36

	0025
	37

	0026
	38
	1-byte
	Table DEFAULT CHARACTER SET option [3]

	0027
	39
	1-byte
	Unused [4]

	0028
	40
	1-byte
	Table ROW_FORMAT option

	0029
	41
	1-byte
	Unused; formerly Table RAID_TYPE option

	002a
	42
	1-byte
	Unused; formerly Table RAID_CHUNKS option

	002b
	43
	4-bytes
	Unused; formerly Table RAID_CHUNKSIZE option

	002c
	44

	002d
	45

	002e
	46

	002f
	47
	4-bytes
	Size in bytes of the keyinfo section where
index metadata is defined

	0030
	48

	0031
	49

	0032
	50

	0033
	51
	4-bytes
	MySQL version encoded as a 4-byte integer in
little endian format. This is the value
MYSQL_VERSION_ID from include/mysql_version.h
in the mysql source tree.
Example:
‘xb6xc5x00x00’
0x0000c5b6 => 50614 => MySQL v5.6.14

	0034
	52

	0035
	53

	0036
	54

	0037
	55
	4-bytes
	Size in bytes of table “extra info”

	CONNECTION=<string> (FEDERATED tables)

	ENGINE=<string>

	PARTITION BY clause + partitioning flags

	WITH PARSER names (MySQL 5.1+)

	Table COMMENT [5]

	0038
	56

	0039
	57

	003a
	58

	003b
	59
	2-byte
	extra_rec_buf_length

	003c
	60

	003d
	61
	1-byte
	Storage engine if table is partitioned [6]

	003e
	62
	2-bytes
	Table KEY_BLOCK_SIZE option

	003f
	63

	[1]	This is defined as FRM_VER+3+ test(create_info->varchar) in 5.0+
Where FRM_VER is defined as 6, so the frm version will be either 9
or 10 depending on if the table has varchar columns

	[2]	Maps to an enum value from “enum legacy_db_type” in sql/handler.h

	[3]	Character set id maps to an id from INFORMATION_SCHEMA.COLLATIONS
and encodes both the character set name and the collation

	[4]	In the source code, there is a comment indicating this byte will be
used for TRANSACTIONAL and PAGE_CHECKSUM table options in the future

	[5]	The table comment is stored in one of two places in the .frm file
If the comment size in bytes is < 255 this is stored in the forminfo
Otherwise it will be estored in the extra info section after the
fulltext parser names (if any)

	[6]	Numeric id that maps to a enum value from “enum legacy_db_type”
in sql/handler.h, similar to legacy_db_type

Key info section

The key info section should always start at offset 0x1000 (4096); this is
obtained from the 2-byte integer in fileinfo header at offset 6, but
in any version of MySQL in the past decade will be 4096.

The size in bytes of this section is obtained from the key_length - typically
this is 4-byte integer at offset 0x002f (47) in the header. Older versions
of MySQL only allocated a 2-byte integer for this length, at offset
0x000e (14). This old location will have the value 0xffff if the key info
length exceeds the capacity of a 2-byte integer.

The structure of this section consists of an initial header noting the
total number of keys, total number of key components and the size of
“extra” key data (namely index names and index comments). This is followed
by a group for each index defined in the table and then the extra data -
names for each index followed by an optional index comment strings.

The header is essentially three integers:

[key_count][key_parts_count][length of extra data]

	Where key_count is the number of indexes this metdata describes,

	key_parts_count is the number of components across all indexes
and the length of extra data indicates how many bytes the index
names and comments uses.

key_count and key_parts_count may be either 1 or 2 bytes. If the first
byte is > 128 then key_count and key_parts_count use two bytes, otherwise
they use one byte each. The extra length is always a 2 byte integer.

The logic in dbsake is:

key_count = keyinfo.uint8()
if key_count < 128:
 key_parts_count = keyinfo.uint8()
 keyinfo.skip(2)
else:
 key_count = (key_count & 0x7f) | (keyinfo.uint8() << 7)
 key_parts_count = keyinfo.uint16()
key_extra_length = keyinfo.uint16()

Each key metadata consists of 8 bytes and each key part consists of 9 bytes.
So the total length of the index metadata is calculated by the formula:

key_count * 8 + key_parts_count * 9

And this is the offset, relative to the start of keyinfo section, where the
index names and comments are found.

Each index group consists of 8 bytes of key metadata followed by 9 bytes of
metadata for each indexed column.

	Index metadata (8 bytes)

	flags
	2 bytes
	key flags from include/my_base.h.

	length
	2 bytes
	length of the index

	key parts
	1 byte
	number of columns covered by this index

	algorithm
	1 byte
	Key algorithm - maps to enum value “enum ha_key_alg”

	unused
	2 bytes
	

Followed by 1 or more column index metadata:

	Column index metadata (9 bytes)

	field number
	2 bytes
	Which column is indexed

	offset
	2 bytes
	Offset into a MySQL datastructure (internal use)

	unused
	1 byte
	

	key_type
	2 bytes
	maps to enum ha_base_keytype

	length
	2 bytes
	length of this index component

The names and comments follow this data with names being separated by the byte
value 255 (‘\xff’) and the names and comments sections being separated by a
null byte. So this essentially looks like this sort of python bytestring:

b'\xffPRIMARY\xffix_column1\xff\x00<index comments>'

Index comments are length-prefixed strings. So there is a 2 byte integer
(little-endian) followed by the specified number of bytes for each comment.

Index comments are not terribly common so this will often be empty.

Defaults Section

Immediately after the keyinfo section there is a byte string that details
the defaults for each column. So this starts at IO_SIZE + key_length,
which can be derived from the .frm header.

The format of this buffer is essentially:

[null_map][encoded column data]

Where the null_map is 1 or more bytes, with a bit per-column that can be
nullable. The total number of bytes will be:

(null_column_count + 7) // 8

The first bit is always set and column bits start a 1 offset in the null
map. If a bit is set for the current column then this indicates the the
default is null (ie. DEFAULT NULL).

If a column’s default is not null, then its default data will be recorded
at some offset noted in the Column metadata (described elsewhere in this
document). The actual data format depends on the column type. This
basically breaks down into the following cases:

	integer-types - little-endian integers of 1, 2, 3, 4 or 8 bytes

	float/double - little endian IEEE 745 values

	
	decimal - either ascii strings (“3.14”) < MySQL 5.0, or a binary

	encoding of 9 decimal digits per 4-byte big-endian
integer

	timestamp - little endian integer representing seconds relative to epoch (< 5.6)

	
	timestamp2 - big-endian integer representing seconds relative to epoch (5.6+);

	additionally packed fractional digits, similar to the decimal format

	date/time - encodes the various components into various bits of a 3 - 8 byte integer

	char - just a string with length bytes (space padded)

	
	varchar - length-prefix string, with the prefix being a little endian integer of

	1 to 2 bytes.

See dbsake/mysqlfrm/mysqltypes.py unpack_type_<name> method for how each datatype
is actually decoded.

Extra data section

The “extra” section encodes some basic table properties. These include:

	CONNECTION=<name> string (used by FEDERATED)

	ENGINE=<name> strings

	PARTITION BY string

	“auto partitioned flag” (used by NDB, at least)

	WITH PARSER - fulltext parser plugin names

	Table COMMENT ‘...’ - only if > 254 bytes

Except for the fulltext parser plugin names (which are null terminated), all
of these properties are length-prefix strings. This essentially has the format:

[2-byte length][<connection string>]
[2-byte length][<engine name string>]
[4-byte length][<partition by clause>][null byte]
[1-byte is_autopartitioned flag]
[parser name][null_byte] for each fulltext parser plugin used
[2-byte length][<table comment string>]

These strings should be decoded per the table’s default character set.

FormInfo

The .frm form info is a section consisting of 288 bytes with integers
noting the length or count of elements in the table.

The start of this section can be found at offset 64 + names_len from the
.frm header and the offset is a 4 byte integer. In python this would
be found via

>> f = open('/var/lib/mysql/mysql/user.frm', 'rb')
>> f.seek(0x0004) # "names_length" documented in the .frm fileinfo header
>> names_len, = struct.unpack("<H", f.read(2)) # always 3 in modern mysql
>> f.seek(64 + names_len)
>> forminfo_offset, = struct.unpack("<I", f.read(4))

Here is a description of some of the more interesting fields available in
the forminfo section. This is not meant to be exhaustive but merely to
document the fields necessary for interpreting pertinent column metadata.

All offsets are relative to the start of the forminfo section

	column_count

	2 byte integer at offset 258

The number of coumns defined on this table

	screens_length

	2 byte integer at offset 260

How many bytes follow the forminfo section prior to the start of the
column metadata

	null_columns

	2 byte integer at offset 282

How many nullable columns are defined in this table

	names_length

	2 byte integer at offset 268

Length in bytes (including delimiters) of column names

	interval_length

	2 byte integer at offset 274

Length in bytes (including delimiters) of the set/enum labels

	comments_length

	2 byte integer at offset 284

Length in bytes of the column comments

Column Metadata

17 bytes per column

Followed by \xff separated column names

Followed by a null byte

Followed by null terminated interval groups with each interval group
consisting of interval names \xff separated.

Followed by a single string of column comments.

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	dbsake 2.1.0 documentation

Index

 Symbols
 | D
 | E
 | F
 | P
 | S
 | U

Symbols

 	

 	
 --defer-foreign-keys

 	

 	sieve command line option

 	
 --defer-indexes

 	

 	sieve command line option

 	
 --events / --no-events

 	

 	sieve command line option

 	
 --force

 	

 	sandbox command line option

 	
 --master-data / --no-master-data

 	

 	sieve command line option

 	
 --progress / --no-progress

 	

 	unpack command line option

 	
 --routines / --no-routines

 	

 	sieve command line option

 	
 --skip-gpgcheck

 	

 	sandbox command line option

 	
 --skip-libcheck

 	

 	sandbox command line option

 	
 --table-data / --no-table-data

 	

 	sieve command line option

 	
 --table-schema / --no-table-schema

 	

 	sieve command line option

 	
 --triggers / --no-triggers

 	

 	sieve command line option

 	
 --verbose

 	

 	fincore command line option

 	
 --write-binlog / --no-write-binlog

 	

 	sieve command line option

 	
 -?, --help

 	

 	dbsake command line option

 	
 -c <config>, --config <config>

 	

 	upgrade-mycnf command line option

 	
 -c, --cache-policy <always|never|refresh|local>

 	

 	sandbox command line option

 	
 -C, --directory <output directory>

 	

 	sieve command line option

 	
 -C, --directory <path>

 	

 	unpack command line option

 	
 -D, --datadir <path>

 	

 	sandbox command line option

 	
 -d, --debug

 	

 	dbsake command line option

 	
 -d, --sandbox-directory <path>

 	

 	sandbox command line option

 	

 	
 -F, --format <name>

 	

 	sieve command line option

 	
 -i, --input-file <path>

 	

 	sieve command line option

 	
 -l, --list-contents

 	

 	unpack command line option

 	
 -m, --mysql-distribution <name>

 	

 	sandbox command line option

 	
 -O, --to-stdout

 	

 	sieve command line option

 	
 -p, --password

 	

 	sandbox command line option

 	
 -p, --patch

 	

 	upgrade-mycnf command line option

 	
 -q, --quiet

 	

 	dbsake command line option

 	
 -R, --replace

 	

 	frmdump command line option

 	
 -s, --data-source <tarball>

 	

 	sandbox command line option

 	
 -t <version>, --target <version>

 	

 	upgrade-mycnf command line option

 	
 -T, --exclude-table <glob pattern>

 	

 	sieve command line option

 	
 -T, --exclude-table <glob>

 	

 	sandbox command line option

 	
 -t, --table <glob pattern>

 	

 	sieve command line option

 	
 -T, --table <glob>

 	

 	unpack command line option

 	
 -t, --table <glob>

 	

 	sandbox command line option

 	unpack command line option

 	
 -t, --type-codes

 	

 	frmdump command line option

 	
 -u, --mysql-user <name>

 	

 	sandbox command line option

 	
 -V, --version

 	

 	dbsake command line option

 	
 -x, --innobackupex-options <options>

 	

 	sandbox command line option

 	
 -z, --compress-command <command>

 	

 	sieve command line option

D

 	

 	
 dbsake command line option

 	

 	-?, --help

 	-V, --version

 	-d, --debug

 	-q, --quiet

 	

 	
 decode-tablename command line option

 	

 	path [path...]

E

 	

 	
 encode-tablename command line option

 	

 	path [path...]

F

 	

 	
 fincore command line option

 	

 	--verbose

 	path [path...]

 	

 	
 frmdump command line option

 	

 	-R, --replace

 	-t, --type-codes

 	path [path...]

P

 	

 	
 path [path...]

 	

 	decode-tablename command line option

 	encode-tablename command line option

 	fincore command line option

 	frmdump command line option

 	uncache command line option

S

 	

 	
 sandbox command line option

 	

 	--force

 	--skip-gpgcheck

 	--skip-libcheck

 	-D, --datadir <path>

 	-T, --exclude-table <glob>

 	-c, --cache-policy <always|never|refresh|local>

 	-d, --sandbox-directory <path>

 	-m, --mysql-distribution <name>

 	-p, --password

 	-s, --data-source <tarball>

 	-t, --table <glob>

 	-u, --mysql-user <name>

 	-x, --innobackupex-options <options>

 	

 	
 sieve command line option

 	

 	--defer-foreign-keys

 	--defer-indexes

 	--events / --no-events

 	--master-data / --no-master-data

 	--routines / --no-routines

 	--table-data / --no-table-data

 	--table-schema / --no-table-schema

 	--triggers / --no-triggers

 	--write-binlog / --no-write-binlog

 	-C, --directory <output directory>

 	-F, --format <name>

 	-O, --to-stdout

 	-T, --exclude-table <glob pattern>

 	-i, --input-file <path>

 	-t, --table <glob pattern>

 	-z, --compress-command <command>

U

 	

 	
 uncache command line option

 	

 	path [path...]

 	
 unpack command line option

 	

 	--progress / --no-progress

 	-C, --directory <path>

 	-T, --table <glob>

 	-l, --list-contents

 	-t, --table <glob>

 	

 	
 upgrade-mycnf command line option

 	

 	-c <config>, --config <config>

 	-p, --patch

 	-t <version>, --target <version>

 Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

 _static/sake-icon.png
Nk

_static/comment-bright.png

_images/sake-icon.png
Nk

_static/file.png

_static/plus.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		dbsake 2.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Andrew Garner.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/down-pressed.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

